Description: Engineering Fracture Mechanics
Curriculum
- 1 Section
- 40 Lessons
- 10 Weeks
Expand all sectionsCollapse all sections
- Engineering Fracture Mechanics40
- 2.1EFM Course Outline
- 2.2Spectacular Failures Part 1
- 2.3Spectacular Failures Part 2
- 2.4LEFM & EPFM
- 2.5Fracture Mechanics is Holistic
- 2.6Fatigue Crack Growth Model
- 2.7Crack Growth & Fracture Mechanisms
- 2.8Elastic Strain Energy
- 2.9Energy Release Rate
- 2.10Utility of Energy Release Rate
- 2.11Pop-in Phenomenon
- 2.12Displacement & Stress Formulations
- 2.13Forms of Stress Functions
- 2.14Airy’s Stress Function for Mode
- 2.15Westergaard Solution of Stress Field for Mode
- 2.16Displacement Field for Mode
- 2.17Relation Between KI & GI
- 2.18Stress Field in Mode-II
- 2.19Generalised Westergaard Approach
- 2.20William’s Eigen Function Approach
- 2.21Multi-parameter Stress Field Equations
- 2.22Validation of Multi-Parameter Field Equations
- 2.23Discussion Session-I
- 2.24Evaluation of SIF for Various Geometries
- 2.25SIF for Embedded Cracks
- 2.26SIF for Surface Cracks
- 2.27Modeling of Plastic Deformation
- 2.28Irwin’s Model
- 2.29Dugdale Model
- 2.30Fracture Toughness Testing
- 2.31Plane Strain Fracture Toughness Testing
- 2.32Plane Stress Fracture Toughness Testing
- 2.33Paris Law & Sigmoidal Curve
- 2.34Crack Closure
- 2.35Crack Growth Models
- 2.36J-Integral
- 2.37HRR Field & CTOD
- 2.38FAD & Mixed Mode Fracture
- 2.39Crack Arrest & Repair Methodologies
- 2.40Discussion Session – II