Description: Design & Optimization of Energy Systems
Curriculum
- 1 Section
- 40 Lessons
- 10 Weeks
Expand all sectionsCollapse all sections
- Design & Optimization of Energy Systems40
- 2.1Introduction to Optimization
- 2.2System Design & Analysis
- 2.3Workable System
- 2.4System Simulation
- 2.5Information Flow Diagrams
- 2.6Successive Substitution Method I
- 2.7Successive Substitution Method II
- 2.8Successive substitution Method III & Newton-Raphson Method I
- 2.9Newton-Raphson Method II
- 2.10Convergence Characteristics of Newton-Raphson Method
- 2.11Newton-Raphson Method for Multiple Variables
- 2.12Solution of System of Linear Equations
- 2.13Introduction to Curve Fitting
- 2.14Example for Lagrange Interpolation
- 2.15Lagrange Interpolation
- 2.16Best Fit
- 2.17Least Square Regression I
- 2.18Least Square Regression II
- 2.19Least Square Regression III
- 2.20Non-Linear Regression
- 2.21Optimization- Basic Ideas
- 2.22Properties of Objective Function & Cardinal Ideas in Optimization
- 2.23Unconstrained Optimization
- 2.24Constrained Optimization Problems
- 2.25Mathematical Proof of the Lagrange Multiplier Method
- 2.26Test for Maxima/ Minima
- 2.27Handling in-Equality Constraints
- 2.28Kuhn-Tucker Conditions
- 2.29Uni-modal Function & Search Methods
- 2.30Dichotomous Search
- 2.31Fibonacci Search Method
- 2.32Reduction Ratio of Fibonacci Search Method
- 2.33Introduction to Multi-Variable Optimization
- 2.34The Conjugate Gradient Method-I
- 2.35The Conjugate Gradient Method-II
- 2.36Linear Programming
- 2.37Dynamic Programming
- 2.38Genetic Algorithms I
- 2.39Genetic Algorithms II
- 2.40Simulated Annealing & Summary