Skip to content
Any One Study
  • HOME
  • FAQ
  • ABOUTExpand
    • About Company
    • Vision and Mission
    • Our Team
    • Privacy Policy
    • Terms of Use
  • CONTACT
  • SMART HEALTHExpand
    • Online Health Assistance from Indian Doctors and Specialist . Live Video Consultation
  • BUY NOW
  • LOGIN
  • Register
Live Assistance
Any One Study
  • Home
  • Courses
  • Engineering
  • Design & Analysis of Algorithms

Design & Analysis of Algorithms

Curriculum

  • 1 Section
  • 33 Lessons
  • 10 Weeks
Expand all sectionsCollapse all sections
  • Design & Analysis of Algorithms
    33
    • 2.1
      Lecture 1: Overview
    • 2.2
      Lecture 2: Framework for Algorithms Analysis
    • 2.3
      Lecture 3: Algorithms Analysis Framework – II
    • 2.4
      Lecture 4: Asymptotic Notation
    • 2.5
      Lecture 5: Algorithm Design Techniques : Basics
    • 2.6
      Lecture 6: Divide And Conquer – I
    • 2.7
      Lecture 7: Divide And Conquer -II Median Finding
    • 2.8
      Lecture 8: Divide And Conquer -III Surfing Lower Bounds
    • 2.9
      Lecture 9: Divide And Conquer -IV Closest Pair
    • 2.10
      Lecture 10: Greedy Algorithms – I
    • 2.11
      Lecture 11: Greedy Algorithms – II
    • 2.12
      Lecture 12: Greedy Algorithms – III
    • 2.13
      Lecture 13: Greedy Algorithms – IV
    • 2.14
      Lecture 14: Pattern Matching – I
    • 2.15
      Lecture 15: Pattern Matching – II
    • 2.16
      Lecture 16: Combinational Search and Optimization I
    • 2.17
      Lecture 17: Combinational Search and Optimization II
    • 2.18
      Lecture 18: Dynamic Programming
    • 2.19
      Lecture 19: Longest Common Subsequences
    • 2.20
      Lecture 20: Matric Chain Multiplication
    • 2.21
      Lecture 21: Scheduling with Startup and Holding Costs
    • 2.22
      Lecture 22: Bipartite Maximum Matching
    • 2.23
      Lecture 23: Lower Bounds for Sorting
    • 2.24
      Lecture 24: Element Distinctness Lower Bounds
    • 2.25
      Lecture 25: NP-Completeness-I -Motivation
    • 2.26
      Lecture 26: NP – Completeness- II
    • 2.27
      Lecture 27: NP – Completeness- III
    • 2.28
      Lecture 28: NP – Completeness- IV
    • 2.29
      Lecture 29: NP – Completeness- V
    • 2.30
      Lecture 30: NP – Completeness- VI
    • 2.31
      Lecture 31: Approximation Algorithms
    • 2.32
      Lecture 32: Approximation Algorithms
    • 2.33
      Lecture 33: Approximation Algorithms for NP
This content is protected, please login and enroll in the course to view this content!
Lecture 12: Greedy Algorithms – III
Prev
Lecture 14: Pattern Matching – I
Next

© 2025 Any One Study 

  • HOME
  • FAQ
  • ABOUT
  • CONTACT
  • SMART HEALTH
  • BUY NOW
  • LOGIN
  • Register
Facebook Twitter Instagram YouTube
  • HOME
  • FAQ
  • ABOUT
    • About Company
    • Vision and Mission
    • Our Team
    • Privacy Policy
    • Terms of Use
  • CONTACT
  • SMART HEALTH
    • Online Health Assistance from Indian Doctors and Specialist . Live Video Consultation
  • BUY NOW
  • LOGIN
  • Register